Semisupervised Learning, Deep Learning Together with Kernel Learning
作者:
时间:2024-11-20
阅读量:84次
  • 演讲人: 於州(华东师范大学,教授)
  • 时间:2024年11月26日15:30(北京时间)
  • 地点:浙江大学紫金港校区行政楼1417报告厅

AbstractClassical statistical methods including local polynomial regression, random forests and many others can be regarded as weighted average type estimation based on specific kernels. We discuss how to enhance semi-supervised learning and deep learning incombination with suitable kernel designs. We also provide theoretcial guarantees for our method. We also present a multitude of numerical studies to demonstrate the prediction power of our proposal.

 

Bio: 於州,华东师范大学教授、博士生导师。主要研究方向为高维数据统计分析及统计机器学习,在Annals of Statistics, BiometrikaJASA, JRSSB, Journal of Machine Learning Research, IEEE Information Theory等知名统计及机器学习期刊上发表论文50余篇。曾主持国家重点研发计划课题、自然科学基金青年、面上项目,获得上海市自然科学二等奖等奖项,霍英东青年科学奖二等奖。并先后入选上海高校东方学者特聘教授,上海市青年拔尖人才,国家级青年人才等计划。