- 演讲人: 於州(华东师范大学,教授)
- 时间:2024年11月26日15:30(北京时间)
- 地点:浙江大学紫金港校区行政楼1417报告厅
Abstract:Classical
statistical methods including local polynomial regression, random forests and
many others can be regarded as weighted average type estimation based on
specific kernels. We discuss how to enhance semi-supervised learning and deep
learning incombination with suitable kernel designs. We also provide
theoretcial guarantees for our method. We also present a multitude of numerical
studies to demonstrate the prediction power of our proposal.
Bio: 於州,华东师范大学教授、博士生导师。主要研究方向为高维数据统计分析及统计机器学习,在Annals
of Statistics, Biometrika,JASA, JRSSB, Journal of
Machine Learning Research, IEEE Information Theory等知名统计及机器学习期刊上发表论文50余篇。曾主持国家重点研发计划课题、自然科学基金青年、面上项目,获得上海市自然科学二等奖等奖项,霍英东青年科学奖二等奖。并先后入选上海高校东方学者特聘教授,上海市青年拔尖人才,国家级青年人才等计划。