Uniform Poincare inequalities and logarithmic Sobolev inequalities for mean field particle systems
时间:2022-05-09
阅读量:511次
- 演讲人: 刘伟(武汉大学 副教授)
- 时间:2022年05月15日 周日 16:00
- 地点:腾讯会议 436-702-636
- 主办单位:数据科学研究中心,统计学研究所
摘要:In this talk we show some explicit and sharp estimates of the spectral gap and the log-Sobolev constant for mean field particles system, uniform in the number of particles, when the confinement potential have many local minimums. Our uniform log-Sobolev inequality, based on Zegarlinski’s theorem for Gibbs measures, allows us to obtain the exponential convergence in entropy of the McKean-Vlasov equation with an explicit rate constant, generalizing the result of Carrillo-McCann-Villani(2003) by means of the displacement convexity approach, or Malrieu(2001,2003) by Bakry-Emery technique or the recent work of Bolley-Gentil-Guillin by dissipation of the Wasserstein distance.This talk is based on a joint work with Arnaud Guillin, Liming Wu and Chaoen Zhang.
个人简介:刘伟,武汉大学数学与统计学院,副教授,近年来主要研究平均场交互作用粒子系统和McKean-Vlasov方程的相关问题。主持国家自科面上项目,参与承担多项国家自科重点项目和面上项目,在CMP、JMPA、AAP、SPA、AIHP、Science in China 等国内外期刊发表学术论文,担任SPA等多家过国内外期刊的审稿人。
联系人:苏中根(suzhonggen@zju.edu.cn)
欢迎参加!