Limiting Spectral Distributions and Inference for Superposable Renormalized Separable Covariance Matrices in High Dimensions
作者:
时间:2025-11-10
阅读量:182次
  • 演讲人: 王励励(浙江工商大学,副教授)
  • 时间:2025年11月14日15:45
  • 地点:浙江大学紫金港校区行政楼1417报告厅
  • 主办单位:浙江大学数据科学研究中心

This talk presents the limiting spectral distribution (LSD) of superposable renormalized separable sample covariance matrices in ultra-high dimensions. Under the condition that both row-wise and column-wise covariance matrices are simultaneously diagonalizable with convergent spectral moments, we establish the existence of a deterministic limiting spectral distribution characterized by a system of equations involving Stieltjes transforms of measures on R+Additionally, we introduce a novel framework for estimating the joint spectra of high-dimensional time series data under separable covariance structure assumptions. A method that utilizes the LSD of separable covariance matrices is developed to estimate the unknown population spectra by repressing the spectrum of the dimensional covariance matrix on a simplex. The consistency of the proposed estimator is proven under the setting where dimension is proportional to sample size. Furthermore, a resampling-based method is developed for statistical inference on low-dimensional functionals of the joint spectrum of the population covariance matrix.

 

个人简介:王励励,浙江工商大学副教授、管理统计研究所副所长。博士毕业于浙江大学概率论与数理统计专业,主要研究方向为大维随机矩阵理论及其金融应用,在统计学权威期刊《Bernoulli》、《Statistica Sinica》、《Journal of Multivariate Analysis》、《Electronic Journal of Statistics》等杂志发表多篇学术论文。主持国家自然科学基金项目两项、教育部人文社科基金一项以及博士后面上基金一项,主持浙江省国际本科生一流在线课程《Statistics》。