- 演讲人: 王励励(浙江工商大学,副教授)
- 时间:2025年11月14日15:45
- 地点:浙江大学紫金港校区行政楼1417报告厅
- 主办单位:浙江大学数据科学研究中心
This talk presents the limiting spectral
distribution (LSD) of superposable renormalized separable sample covariance
matrices in ultra-high dimensions. Under the condition that both row-wise and
column-wise covariance matrices are simultaneously diagonalizable with
convergent spectral moments, we establish the existence of a deterministic
limiting spectral distribution characterized by a system of equations involving
Stieltjes transforms of measures on R+。Additionally, we introduce a novel framework for estimating the
joint spectra of high-dimensional time series data under separable covariance
structure assumptions. A method that utilizes the LSD of separable covariance
matrices is developed to estimate the unknown population spectra by repressing
the spectrum of the dimensional covariance matrix on a simplex. The consistency
of the proposed estimator is proven under the setting where dimension is
proportional to sample size. Furthermore, a resampling-based method is
developed for statistical inference on low-dimensional functionals of the joint
spectrum of the population covariance matrix.
个人简介:王励励,浙江工商大学副教授、管理统计研究所副所长。博士毕业于浙江大学概率论与数理统计专业,主要研究方向为大维随机矩阵理论及其金融应用,在统计学权威期刊《Bernoulli》、《Statistica Sinica》、《Journal of Multivariate Analysis》、《Electronic Journal of Statistics》等杂志发表多篇学术论文。主持国家自然科学基金项目两项、教育部人文社科基金一项以及博士后面上基金一项,主持浙江省国际本科生一流在线课程《Statistics》。