- 演讲人: 柳松(英国布里斯托大学 统计科学高级讲师)
- 时间:2022年09月14日 周三上午10:00
- 地点:浙江大学紫金港校区1416报告厅
- 主办单位:浙江大学数据科学研究中心
In this paper, we show that the arc length of the optimal ROC curve is an .-divergence By leveraging this result, we express the arc length using a variational objective and estimate it accurately using positive and negative samples. We show that this estimator has a non-parametric convergence rate ( depends on the smoothness). Using the same technique, we show that the area sandwiched between the optimal ROC curve and the diagonal can be expressed via a similar variational objective. These new insights lead to a novel two-step classification procedure that maximizes an approximate lower bound of the maximal AUC. Experiments on CIFAR-10 datasets show that the proposed two-step procedure achieves good AUC performance in imbalanced binary classification tasks while being less computationally demanding than the classic AUC maximizer in the offline setting.
报告人简介:
柳松,博士毕业于东京工业大学(导师杉山将)。毕业后曾在日本数理统计研究所担任博士后研究员(导师福水键次)。目前工作于英国布里斯托大学数学系,担任统计科学高级讲师。他的主要研究方向包括概率密度比估计,信息散度,统计的机器学习。发表论文等请参见: http://allmodelsarewrong.net.
联系人:孙文光(wgsun@zju.edu.cn)