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Abstract: We tackle the problem of high-dimensional nonparametric density estimation by 

taking the class of log-concave densities on $\mathbb{R}^p$ and incorporating within it 

symmetry assumptions, which facilitate scalable estimation algorithms and can mitigate the curse 

of dimensionality. Our main symmetry assumption is that the super-level sets of the density are 

$K$-homothetic (i.e. scalar multiples of a convex body $K \subseteq \mathbb{R}^p$). When 

$K$ is known, we prove that the $K$-homothetic log-concave maximum likelihood estimator 

based on n independent observations from such a density has a worst-case risk bound with respect 

to, e.g., squared Hellinger loss, of $O(n^{-4/5})$, independent of $p$. Moreover, we show that the 

estimator is adaptive in the sense that if the data generating density admits a special form, then a 

nearly parametric rate may be attained. We also provide worst-case and adaptive risk bounds in 

cases where $K$ is only known up to a positive definite transformation, and where it is completely 

unknown and must be estimated nonparametrically. 

 


