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Abstract: Given a large number of covariates Z, we consider the estimation of a 
high-dimensional parameter θ in an individualized linear threshold θTZ for a continuous variable 
X, which minimizes the disagreement between sign(X−θTZ) and a binary response Y. While the 
problem can be formulated into the M-estimation framework, minimizing the corresponding 
empirical risk function is computationally intractable due to discontinuity of the sign function. 
Moreover, estimating θ even in the fixed-dimensional setting is known as a nonregular problem 
leading to nonstandard asymptotic theory. To tackle the computational and theoretical challenges 
in the estimation of the high-dimensional parameter θ, we propose an empirical risk 
minimization approach based on a regularized smoothed loss function. The statistical and 
computational trade-off of the algorithm is investigated. Statistically, we show that the finite 
sample error bound for estimating θ in ℓ2 norm is (slogd/n)β/(2β+1), where d is the dimension of 
θ, s is the sparsity level, n is the sample size and β is the smoothness of the conditional density of 
X given the response Y and the covariates Z. The convergence rate is nonstandard and slower 
than that in the classical Lasso problems. Furthermore, we prove that the resulting estimator is 
minimax rate optimal up to a logarithmic factor. The Lepski's method is developed to achieve the 
adaption to the unknown sparsity s and smoothness β. Computationally, an efficient 
path-following algorithm is proposed to compute the solution path. We show that this algorithm 
achieves geometric rate of convergence for computing the whole path. Finally, we evaluate the 
finite sample performance of the proposed estimator in simulation studies and a real data analysis.


