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Abstract: The Neyman-Pearson (NP) paradigm in binary classification seeks classifiers that 
achieve a minimal type II error while enforcing the prioritized type I error controlled under some 
user-specified level α. This paradigm serves naturally in applications such as severe disease 
diagnosis and spam detection, where people have clear priorities among the two error types. 
Recently, Tong, Feng, and Li (2018) proposed a nonparametric order statistics based umbrella 
algorithm that adapts all scoring-type classification methods (e.g., logistic regression, support 
vector machines, random forest) to respect the given type I error upper bound α with high 
probability, without specific distributional assumptions on the features and response. Universal 
the umbrella algorithm is, it demands an explicit minimum sample size requirement on class 0, 
which is usually the more scarce class. In this work, we employ the parametric linear 
discriminant analysis (LDA) model and propose a new parametric thresholding algorithm, which 
does not need the minimum sample size requirements on class 0 observations and thus is 
applicable to small sample applications such as rare disease diagnosis. Leveraging both the 
nonparametric and nonparametric thresholding rules, we propose four LDA based NP classifiers, 
for both low and high dimensional settings. On the theoretical front, we prove NP oracle 
inequalities for one proposed classifier. This is the first time such theoretical criteria are 
established under the parametric model assumption and unbounded feature support. Furthermore, 
as NP classifiers involve a sample splitting step of class 0 observations, we construct a new 
adaptive sample splitting scheme that can be applied universally to NP classifiers and this 
adaptive strategy enhances the accuracy of these classifiers.


