
Causal Inference: Part I

Sukjin Han

University of Bristol

June 2024

Center for Data Science, Zhejiang University



Causal Inference: Roadmap for Part I

1. Counterfactual framework

2. Relationship to structural models

3. Treatment effects, issue of heterogeneity

4. Treatment parameters of interest

5. Selection problem / sorting problem

6. Overview of possible approaches



Causal Questions

I Examples of questions in causal inference:
1. Labor economics: University premium, industry wage gap

2. Public finance: Impacts of health care expenditures and health
insurance on health

3. Education: If school choice, education reform, and school
inputs boost learning

4. Macroeconomics: If expansionary monetary policy revive a
troubling economy

5. Industrial organization: If a monopolist’s price increase lower
demand

6. Environmental economics: If firms’ green technology adoption
reduce local pollution

I In causal inference, we want to know the mechanisms behind



Counterfactual Framework
I Di : treatment dummy variable for individual i

• Di = 1 if treated, = 0 otherwise

I Y1i : counterfactual outcome for i if treated
• i.e., what would have been observed if treated

I Y0i : counterfactual outcome for i if not treated
• i.e., what would have been observed if not treated

I Yi : observed outcome for i
• That is,

Yi = Y0i + Di (Y1i − Y0i ) =

{
Y1i if Di = 1
Y0i if Di = 0

I Implicit in the notation:
• No interaction across units (i.e., no GE effects or peer effects)

I Xi : observed control variables, directly affect Y0i and Y1i



Example: College Premium

I Di : college education of individual i
• Di = 1 if received college degree, = 0 if not

I Y1i : potential wage of i if worked with college degree

I Y0i : potential wage of i if worked without college degree

I Yi : observed wage of i

I Xi : characteristics in standard wage equation (e.g., age,
gender, location, parental education)



Structural Models

I We now introduce structural models

I Counterfactual notation can be equivalently written with
structural notation
• Example 1: Yi = β0 + β1Di + Xiγ + Ui

Y1i = β0 + β1 + Xiγ + Ui

Y0i = β0 + Xiγ + Ui

• Example 2: Yi = g(Di ,Xi ,Ui )

Y1i = g(1,Xi ,Ui )

Y0i = g(0,Xi ,Ui )



Counterfactual Framework vs. Structural Models

I There are philosophical differences between counterfactual
outcome framework vs. structural models
• “Effect of causes” (statistical solution) vs. “cause of effects”

(scientific solution)

I Effect of causes:
• All in black-box

• Maybe enough in experimental setting (i.e., with
randomization)

• Hard to extrapolate

I Cause of effects:
• Want to learn mechanisms behind

• Use economic theory as guidance

• Counterfactual analysis: Can forecast effects of treatments
that never occurred before
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Treatment Effects

I The treatment effect for individual i can be written as

Y1i − Y0i

I Fundamental challenge of causal inference:
• Y1i and Y0i are not simultaneously observed

• e.g., same individual’s wages with and without college

I One solution:

E [Y1i − Y0i ] = E [Y1i ]− E [Y0i ]

• cf. Qτ (Y1i − Y0i ) 6= Qτ (Y1i )− Qτ (Y0i )

• cf. Distributional treatment effects



Treatment Effects

I The treatment effect for individual i can be written as

Y1i − Y0i

I Fundamental challenge of causal inference:
• Y1i and Y0i are not simultaneously observed

• e.g., same individual’s wages with and without college

I One solution:

E [Y1i − Y0i ] = E [Y1i ]− E [Y0i ]

• cf. Qτ (Y1i − Y0i ) 6= Qτ (Y1i )− Qτ (Y0i )

• cf. Distributional treatment effects



Treatment Effect Heterogeneity

I Let

∆i = Y1i − Y0i

I Q: How does ∆i vary with i?

1. Homogeneous treatment effect: ∆i = ∆ (doesn’t vary with i)
• Example: Yi = β0 + β1Di + Xiγ + Ui then

Y1i − Y0i = β1

• Another example: Yi = β0 + β1Di + g(Xi ) + Ui
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Treatment Effect Heterogeneity

2. Homogeneous treatment effect conditional on Xi : ∆i = ∆(Xi )

• That is, if Xi = Xj then Y1i − Y0i = Y1j − Y0j (i.e., individuals
with same X have same effect)

• Example: Yi = β0 + β1DiXi + Xiγ + Ui then

Y1i − Y0i = β1Xi

• Another example: Yi = g(Di ,Xi ) + Ui then

Y1i − Y0i = g(1,Xi )− g(0,Xi )



Treatment Effect Heterogeneity

3. Heterogeneous treatment effect: ∆i varies with i , even
conditional on Xi

• Example: Yi = β0 + β1iDi + Xiγ + Ui then

Y1i − Y0i = β1i

• Another example: Yi = g(Di ,Xi ,Ui ) then

Y1i − Y0i = g(1,Xi ,Ui )− g(0,Xi ,Ui )



Selection Bias and Sorting Gain
I Two subcases of Case 3:

• (a)Y1i − Y0i is independent of Di conditional on Xi

• (b)Y1i − Y0i is correlated with Di conditional on Xi

I This distinction is different from the one involved in usual
selection bias discussion
• Selection bias: Y0i is correlated of Di even conditional on Xi

• No selection bias: Y0i is independent of Di conditional on Xi

� e.g., Y0i = β0 + Xiγ + Ui with E [Ui |Di ,Xi ] = E [Ui |Xi ]

� The usual conditional independence condition addresses
selection bias

I (a) vs. (b): whether there is “essential heterogeneity” (and
sorting on gain) or not
• Case (b) is when individuals sort themselves based on gain

(not only based on baseline outcome Y0)

• More later



Objects of Interest

I Homogeneous treatment effects (Cases 1 and 2):
• ∆, ∆(Xi ), or E [∆(Xi )]

I Heterogeneous treatment effects (Case 3(a)):
• E [∆i ], E [∆i |Xi ] (or more)

I Heterogeneous treatment effects (Case 3(b)):
• Not clear

• e.g., local average treatment effect (LATE) (later)



Examples of Mean Treatment Parameters

I Average treatment effect (ATE): E [Y1i − Y0i ]

I ATE on the treated (TT): E [Y1i − Y0i |Di = 1]

I ATE on the un-treated (TUT): E [Y1i − Y0i |Di = 0]

I ATE conditional on Xi : E [Y1i − Y0i |Xi ]

I TT conditional on Xi : E [Y1i − Y0i |Di = 1,Xi ]

I TUT conditional on Xi : E [Y1i − Y0i |Di = 0,Xi ]



Heterogenous Treatment Effects

I Homogeneous treatment effects (Case 1):
• ATE = TT = TUT = ATE (Xi ) = TT (Xi ) = TUT (Xi )

I Homogeneous treatment effects conditional on Xi (Case 2):
• ATE (Xi ) = TT (Xi ) = TUT (Xi ) but possible that

ATE 6= TT 6= TUT

I Heterogeneous treatment effects (Case 3(a)):
• Same as Case 2

I Heterogeneous treatment effects (Case 3(b)):
• ATE 6= TT 6= TUT 6= ATE (Xi ) 6= TT (Xi ) 6= TUT (Xi )



Evaluation Problems

I Homogeneous treatment effects (Case 1): Selection bias

E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1i − Y0i |Di = 1] + E [Y0i |Di = 1]− E [Y0i |Di = 0]

= ∆ + E [Y0i |Di = 1]− E [Y0i |Di = 0]

• E [Y0i |Di = 1]− E [Y0i |Di = 0] is selection bias

• e.g., individuals with higher “baseline” tend to attend college

• Same in Case 2



Evaluation Problems

I Heterogeneous treatment effects (Case 3):

E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1i − Y0i |Di = 1] + E [Y0i |Di = 1]− E [Y0i |Di = 0]

= E [Y1i − Y0i ] + E [Y1i − Y0i |Di = 1]− E [Y1i − Y0i ]

+ E [Y0i |Di = 1]− E [Y0i |Di = 0]

• E [Y1i − Y0i |Di = 1]− E [Y1i − Y0i ] is the sorting gain

• e.g., individuals with higher college premium tend to attend
college

• Sorting gain is not zero in Case 3(b)



Overview of Possible Approaches

I How to recover some mean treatment parameters?
1. Randomized experiment

2. Matching / conditional independence assumption

3. Difference-in-differences (DD)

4. Regression discontinuity (RD)

5. Instrumental variables (IV) methods

I These methods allow heterogeneous treatment effects
• Which treatment parameter is recovered depends on the

method

• Sometime we use structural models (e.g., linear model) for
each method
� This means we impose more restrictions

� Treatment effects may even be restricted to be homogeneous



Randomized Experiment

I When Di is randomized, it satisfies (Y1i ,Y0i ) ⊥ Di

• e.g., random lottery for college (among eligible applicants)

I Then,

E [Ydi |Di = d ] = E [Ydi ] for d = 1, 0

I Random assignment eliminates selection bias and sorting gain:

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Y1i |Di = 1]− E [Y0i |Di = 0]

= E [Y1i ]− E [Y0i ]

= E [Y1i − Y0i ]

I Simple difference-in-mean estimator can be used:∑n
i=1 Yi1{Di = 1}∑n
i=1 1{Di = 1}

−
∑n

i=1 Yi1{Di = 0}∑n
i=1 1{Di = 0}



Matching and Conditional Independence
I First, we consider the approach that imposes conditional

independence assumption:

(Y1i ,Y0i ) ⊥ Di |Xi

• i.e., conditional on Xi (e.g., demographics, previous
educations), we assume Di (e.g., college) is as if randomized

• Idea of matching: conditional on Xi , the two groups are
balanced

• This can be weaken to mean independence

I Another assumption needed: For any Xi ,

0 < Pr[Di = 1|Xi ] < 1

• Common support (or overlap) assumption

• Related to “no multicollinearity” assumption



Matching and Conditional Independence
I Under these assumption,

E [Yi |Di = 1,Xi ]− E [Yi |Di = 0,Xi ]

= E [Y1i |Di = 1,Xi ]− E [Y0i |Di = 0,Xi ]

= E [Y1i |Xi ]− E [Y0i |Xi ]

= E [Y1i − Y0i |Xi ]

I Xi can include many covariates, even continuous variables
• May not be appealing in practice

I Surprising result:

(Y1i ,Y0i ) ⊥ Di |Xi ⇐⇒ (Y1i ,Y0i ) ⊥ Di |P(Xi )

where P(Xi ) = Pr[Di = 1|Xi ] is the propensity score
• This is the idea of propensity score matching

• As long as the propensity of receiving treatment is the same,
the two groups are balanced



Matching and Conditional Independence

I That is,

E [Yi |Di = 1,P(Xi )]− E [Yi |Di = 0,P(Xi )]

= E [Y1i − Y0i |P(Xi )]

• Again, the common support assumption is implicitly used

I Various estimators can be used
• Regression-based estimator

• Inverse probability weighting estimator

• Matching estimator



Matching and Conditional Independence

I Much weaker independence assumption:

E [Y0i |Di = 1,Xi ] = E [Y0i |Di = 0,Xi ]

I Then,

E [Yi |Di = 1,Xi ]− E [Yi |Di = 0,Xi ]

= E [Y1i |Di = 1,Xi ]− E [Y0i |Di = 0,Xi ]

= E [Y1i |Di = 1,Xi ]− E [Y0i |Di = 1,Xi ]

= E [Y1i − Y0i |Di = 1,Xi ]



Before-After Analysis (Event Studies)
I Suppose we observe individuals before/after treatment

• e.g., before and after job training

I Di = 1 if i receives treatment at given time

I Yit : outcome in period t; Y1it and Y0it are potential outcomes
• t = b (before) or a (after)

• Yia: outcome in period after the treatment (Yia = Y1ia)

• Yib: outcome in period before the treatment (Yib = Y0ib)

I Assumption: E [Y0ib|Di = 1] = E [Y0ia|Di = 1]

I Then,

E [Yia|Di = 1]− E [Yib|Di = 1] = E [Y1ia|Di = 1]− E [Y0ib|Di = 1]

= E [Y1ia|Di = 1]− E [Y0ia|Di = 1]

= E [Y1ia − Y0ia|Di = 1]

• Treatment effect on the treated (after the treatment)



Difference-in-Differences

I Is the assumption above plausible?
• e.g., time effects, age effects...

I Suppose we observe treated/untreated individuals, before/after
treatment

I Common trend assumption:

E [Y0ia − Y0ib|Di = 1] = E [Y0ia − Y0ib|Di = 0]

• e.g., “baseline” wage trends are same btw treatment and
control groups

• Let ∆Y0i = Y0ia − Y0ib, then this assumption (conditional on
Xi ) is conditional indep in terms of ∆Y0i



Difference-in-Differences

I Common trend assumption:

E [Y0ia − Y0ib|Di = 1] = E [Y0ia − Y0ib|Di = 0]

I Then,

E [Yia − Yib|Di = 1]− E [Yia − Yib|Di = 0]

= E [Y1ia − Y0ib|Di = 1]− E [Y0ia − Y0ib|Di = 0]

= E [Y1ia − Y0ia|Di = 1]

+ E [Y0ia − Y0ib|Di = 1]− E [Y0ia − Y0ib|Di = 0]

= E [Y1ia − Y0ia|Di = 1]

• Treatment effect on the treated (after the treatment)



Regression Discontinuity

I Let Ri be the running variable
• e.g., college test score or eligibility score

I Suppose

Di =

{
1 if Ri ≥ r0

0 if Ri < r0

I Comparison:

lim
ε↓0

E [Yi |Ri = r0 + ε]− lim
ε↓0

E [Yi |Ri = r0 − ε]

= lim
ε↓0

E [Y1i |Ri = r0 + ε]− lim
ε↓0

E [Y0i |Ri = r0 − ε]

= E [Y1i |Ri = r0]− E [Y0i |Ri = r0]

I Local polynomial estimators (with chosen window of Ri )



Instrumental Variables Methods

I Suppose there exists an instrumental variable (IV) that
satisfies
• cov(D,Z ) 6= 0

• Z ⊥ (Y0,Y1)
� i.e., Exclusion restriction: The only difference created by IV is

in the likelihood of receiving treatment

I e.g., distance to nearest college or density of colleges

I e.g., random lottery for college (but potential non-compliance)



Challenges with Essential Heterogeneity

I Consider

Y = Y0 + D(Y1 − Y0)

= E [Y0] + DE [Y1 − Y0] + (ε+ ηD)

where ε = Y0 − E [Y0] and η = (Y1 − Y0)− E [Y1 − Y0]

I Q: Does linear IV recover a parameter of interest?
• If ∆ const, classical IV results hold and IV recovers treatment

effects

• If ∆ hetero and if essential hetero, classical IV results not hold
and IV not recover interpretable parameters

• If ∆ hetero and if essential hetero, and if impose selection
model (i.e., LATE monotonicity), IV recovers interpretable
parameters (may/may not be of interest)



Challenges with Essential Heterogeneity
I Case 1: ∆ const (i.e., η = 0)

• Then, cov(Z ,Y0) = 0 implies cov(Z , ε) = 0

• Then,

cov(Y ,Z )

cov(D,Z )
= E [Y1 − Y0]

• If there is another IV, it identifies the same parameter

I Case 3: ∆ varies even conditional on X
• In general, we cannot identify E [Y1 − Y0]

• We need E [ε+ ηD|Z ] = 0

• E [ε|Z ] = 0, but

E [ηD|Z ] = E [η|D = 1,Z ]P[D = 1|Z ]

and even if E [η|Z ] = 0, E [η|D = 1,Z ] 6= 0 (i.e., essential
hetero)



Challenges with Essential Heterogeneity

I Three approaches:
1. LATE and MTE approaches (selection model approach)

� May focus on different parameters

2. Nonparametric IV approach (may be restrictive)
� May be restrictive to allow for essential heterogeneity

3. Nonparametric control function approach



Local Average Treatment Effect (LATE)

I Suppose Zi is binary
• e.g., close to college (Zi = 1) or distant to college (Zi = 0)

I We cannot recover ATE E [Y1i − Y0i ] in general

I Define counterfactual treatment: D1i and D0i
• e.g., D1i = 1 (or 0): i would have attended (or not attend)

college, had i lived close to college

I “Monotonicity” assumption: D1i ≥ D0i for all i or D1i ≤ D0i
for all i
• e.g., no individual who would have attended college if living far

from college but have not attended if living close to college

• i.e., no defiers {D1i = 0,D0i = 1}



Local Average Treatment Effect (LATE)

I Then,

E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]
= E [Y1i − Y0i |D1i = 1,D0i = 0]

• E [Yi |Zi=1]−E [Yi |Zi=0]
E [Di |Zi=1]−E [Di |Zi=0] is the Wald estimand (or TSLS estimand)

• E [Y1i − Y0i |D1i = 1,D0i = 0] is called LATE

• Individuals who behave like {D1i = 1,D0i = 0} are called
“compliers”

• e.g., individuals who would have attended college if living close
to college but have not attended if living far

I Need to understand which parameter you are estimating!



Marginal Treatment Effects (MTE)

I Suppose

Di = 1[h(Zi ) ≥ Vi ]

• The structure can be motivated by agent’s optimizing behavior
� e.g., attend college when net utility is positive

• This model is equivalent to “monotonicity” assumption above!

I Assume Zi is continuous, and define MTE as

E [Y1i − Y0i |Vi = v ]

• ATE for those who are indifferent (i.e., those on the “margin”)



Marginal Treatment Effects (MTE)

I MTE:

E [Y1i − Y0i |Vi = v ]

I Note that

E [Y1i − Y0i |Dz ′i = 1,Dzi = 0] = E [Y1i − Y0i |h(z ′) ≥ Vi , h(z) < Vi ]

= E [Y1i − Y0i |h(z) < Vi ≤ h(z ′)]

therefore

E [Y1i − Y0i |Vi = h(z)] = lim
h(z ′)→h(z)

E [Y1i − Y0i |h(z) < Vi ≤ h(z ′)]



Marginal Treatment Effects (MTE)
I MTE can be viewed as a building block to generate various

treatment parameters:

τk =

∫
ωk(v , z)E [Y1i − Y0i |Vi = v ]dv

• ωk(z , v) is known weight specific to the parameter of interest

I For example,

ATE = E [Y1i − Y0i ] =

∫ 1

0
E [Y1i − Y0i |Vi = v ]dv

LATE = E [Y1i − Y0i |Dzi = 1,Dz ′i = 0]

=

∫ P(z)

P(z ′)

E [Y1i − Y0i |Vi = v ]

P(z)− P(z ′)
dv

ATT = E [Y1i − Y0i |Di = 1] =

∫ P(z)

0

E [Y1i − Y0i |Vi = v ]

P[D = 1]
dv



Marginal Treatment Effects (MTE)

I Moreover, MTE can be recovered by

E [Y1i − Y0i |Vi = p] =
∂E [Yi |P(Zi ) = p]

∂p

where P(Xi ) = Pr[Di = 1|Xi ]
• Continuity of P(Zi ) and thus continuity of Zi is important

� e.g., Zi is actual distance to nearest college

• Support of P(Zi ) and thus support of Zi can be important,
depending on parameters
� e.g., for ATE, P(Zi )→ 1, 0, which means Zi → +∞,−∞

I MTE itself can be a parameter of interest
• Non-constant MTE reflects heterogeneity

I MTE can be estimated nonparametrically, but typically after
imposing more structure



Nonparametric IV Approach

I Let

Yi = g(Di ,Ui )

• Want to know g because Y1i = g(1,Ui ) and Y0i = g(0,Ui )

I Let Zi be an IV that satisfies E [Ui |Zi ] = 0

I Assume Ui is scalar and g(Di , ·) is strictly monotonic
• e.g., Yi = g(Di ) + Ui

• If Ui is continuous, Yi should be continuous



Nonparametric IV Approach

I Then

0 = E [Ui |Zi ] = E [g−1(Di ,Yi )|Zi ]

• e.g., 0 = E [Ui |Zi ] = E [Yi − g(Di )|Zi ]

I If we additionally impose completeness condition (i.e., Zi is
relevant for Di in “nonparametric sense”), then g can be
recovered from

E [Yi |Zi ] = E [g(Di )|Zi ]

I Estimation is more challenging due to the ill-posed inverse
problem
• E [·] is smooth, so its inverse is non-smooth

• Related to “small denominator” problem

• Regularization is needed



Nonparametric Control Function Approach

I Assume

Di = h(Zi ,Vi )

where Vi is scalar and h(Zi , ·) is strictly monotonic
• e.g., Di = h(Zi ) + Vi

• If Vi is continuous, Di should be continuous (e.g., years of
education)

I Then, construct a CF:

Vi = h−1(Zi ,Di )

• e.g., Vi = Di − h(Zi )



Nonparametric Control Function Approach

I Assume E [Ui |Vi ,Zi ] = E [Ui |Vi ]

I Let Yi = g(Di ) + Ui for simplicity

I Then

E [Yi |Di ,Zi ] = g(Di ) + E [Ui |Di ,Zi ] = g(Di ) + E [Ui |Vi ,Zi ]

= g(Di ) + E [Ui |Vi ] = g(Di ) + λ(Vi )

I Equivalently

Yi = g(Di ) + λ(Vi ) + ηi

where E [ηi |Di ,Zi ] = 0

I Nonparametrically estimate g and λ after estimating Vi
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Thank You! ,


