Causal Inference: Part I

Sukjin Han

University of Bristol

June 2024

Center for Data Science, Zhejiang University

Causal Inference: Roadmap for Part I

- 1. Counterfactual framework
- 2. Relationship to structural models
- 3. Treatment effects, issue of heterogeneity

- 4. Treatment parameters of interest
- 5. Selection problem / sorting problem
- 6. Overview of possible approaches

Causal Questions

- Examples of questions in causal inference:
 - 1. Labor economics: University premium, industry wage gap
 - 2. Public finance: Impacts of health care expenditures and health insurance on health
 - 3. Education: If school choice, education reform, and school inputs boost learning
 - 4. Macroeconomics: If expansionary monetary policy revive a troubling economy
 - 5. Industrial organization: If a monopolist's price increase lower demand
 - 6. Environmental economics: If firms' green technology adoption reduce local pollution
- In causal inference, we want to know the mechanisms behind

Counterfactual Framework

- D_i: treatment dummy variable for individual i
 - $D_i = 1$ if treated, = 0 otherwise
- ▶ Y_{1i}: counterfactual outcome for *i* if treated
 - i.e., what would have been observed if treated
- ► Y_{0i}: counterfactual outcome for *i* if not treated
 - i.e., what would have been observed if not treated
- Y_i : observed outcome for *i*

That is,

$$Y_i = Y_{0i} + D_i(Y_{1i} - Y_{0i}) = \begin{cases} Y_{1i} & \text{if } D_i = 1 \\ Y_{0i} & \text{if } D_i = 0 \end{cases}$$

- Implicit in the notation:
 - No interaction across units (i.e., no GE effects or peer effects)

• X_i : observed control variables, directly affect Y_{0i} and Y_{1i}

Example: College Premium

- D_i: college education of individual i
 - $D_i = 1$ if received college degree, = 0 if not
- Y_{1i} : potential wage of *i* if worked with college degree
- Y_{0i} : potential wage of *i* if worked without college degree
- ► Y_i: observed wage of i
- ► X_i: characteristics in standard wage equation (e.g., age, gender, location, parental education)

Structural Models

- We now introduce structural models
- Counterfactual notation can be equivalently written with structural notation

• Example 1:
$$Y_i = \beta_0 + \beta_1 D_i + X_i \gamma + U_i$$

$$Y_{1i} = \beta_0 + \beta_1 + X_i \gamma + U_i$$
$$Y_{0i} = \beta_0 + X_i \gamma + U_i$$

• Example 2: $Y_i = g(D_i, X_i, U_i)$

$$Y_{1i} = g(1, X_i, U_i)$$

 $Y_{0i} = g(0, X_i, U_i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Counterfactual Framework vs. Structural Models

- There are philosophical differences between counterfactual outcome framework vs. structural models
 - "Effect of causes" (statistical solution) vs. "cause of effects" (scientific solution)

Counterfactual Framework vs. Structural Models

- There are philosophical differences between counterfactual outcome framework vs. structural models
 - "Effect of causes" (statistical solution) vs. "cause of effects" (scientific solution)
- Effect of causes:
 - All in black-box
 - Maybe enough in experimental setting (i.e., with randomization)
 - Hard to extrapolate
- Cause of effects:
 - Want to learn mechanisms behind
 - Use economic theory as guidance
 - Counterfactual analysis: Can forecast effects of treatments that never occurred before

Treatment Effects

▶ The treatment effect for individual *i* can be written as

 $Y_{1i} - Y_{0i}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Fundamental challenge of causal inference:
 - Y_{1i} and Y_{0i} are not simultaneously observed
 - e.g., same individual's wages with and without college

Treatment Effects

The treatment effect for individual i can be written as

 $Y_{1i} - Y_{0i}$

- Fundamental challenge of causal inference:
 - Y_{1i} and Y_{0i} are not simultaneously observed
 - e.g., same individual's wages with and without college
- One solution:

$$E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$$

- cf. $Q_{\tau}(Y_{1i} Y_{0i}) \neq Q_{\tau}(Y_{1i}) Q_{\tau}(Y_{0i})$
- cf. Distributional treatment effects

Let

$$\Delta_i = Y_{1i} - Y_{0i}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

• Q: How does Δ_i vary with *i*?

Let

$$\Delta_i = Y_{1i} - Y_{0i}$$

• Q: How does Δ_i vary with *i*?

- 1. Homogeneous treatment effect: $\Delta_i = \Delta$ (doesn't vary with *i*)
 - Example: $Y_i = \beta_0 + \beta_1 D_i + X_i \gamma + U_i$ then

$$Y_{1i} - Y_{0i} = \beta_1$$

• Another example: $Y_i = \beta_0 + \beta_1 D_i + g(X_i) + U_i$

2. Homogeneous treatment effect conditional on X_i : $\Delta_i = \Delta(X_i)$

• That is, if $X_i = X_j$ then $Y_{1i} - Y_{0i} = Y_{1j} - Y_{0j}$ (i.e., individuals with same X have same effect)

• Example:
$$Y_i = \beta_0 + \beta_1 D_i X_i + X_i \gamma + U_i$$
 then

$$Y_{1i} - Y_{0i} = \beta_1 X_i$$

• Another example: $Y_i = g(D_i, X_i) + U_i$ then

$$Y_{1i} - Y_{0i} = g(1, X_i) - g(0, X_i)$$

- 3. Heterogeneous treatment effect: Δ_i varies with *i*, even conditional on X_i
 - Example: $Y_i = \beta_0 + \beta_{1i}D_i + X_i\gamma + U_i$ then

$$Y_{1i} - Y_{0i} = \beta_{1i}$$

• Another example: $Y_i = g(D_i, X_i, U_i)$ then

$$Y_{1i} - Y_{0i} = g(1, X_i, U_i) - g(0, X_i, U_i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Selection Bias and Sorting Gain

- Two subcases of Case 3:
 - (a) $Y_{1i} Y_{0i}$ is independent of D_i conditional on X_i
 - (b) $Y_{1i} Y_{0i}$ is correlated with D_i conditional on X_i
- This distinction is different from the one involved in usual selection bias discussion
 - Selection bias: Y_{0i} is correlated of D_i even conditional on X_i
 - No selection bias: Y_{0i} is independent of D_i conditional on X_i
 ◊ e.g., Y_{0i} = β₀ + X_iγ + U_i with E[U_i|D_i, X_i] = E[U_i|X_i]
 - The usual conditional independence condition addresses selection bias
- (a) vs. (b): whether there is "essential heterogeneity" (and sorting on gain) or not
 - Case (b) is when individuals sort themselves based on gain (not only based on baseline outcome Y_0)
 - More later

Objects of Interest

- Homogeneous treatment effects (Cases 1 and 2):
 - Δ , $\Delta(X_i)$, or $E[\Delta(X_i)]$
- Heterogeneous treatment effects (Case 3(a)):
 - $E[\Delta_i]$, $E[\Delta_i|X_i]$ (or more)
- Heterogeneous treatment effects (Case 3(b)):
 - Not clear
 - e.g., local average treatment effect (LATE) (later)

Examples of Mean Treatment Parameters

- Average treatment effect (ATE): $E[Y_{1i} Y_{0i}]$
- ATE on the treated (TT): $E[Y_{1i} Y_{0i}|D_i = 1]$
- ATE on the un-treated (TUT): $E[Y_{1i} Y_{0i}|D_i = 0]$
- ATE conditional on X_i : $E[Y_{1i} Y_{0i}|X_i]$
- ▶ TT conditional on X_i : $E[Y_{1i} Y_{0i}|D_i = 1, X_i]$
- ▶ TUT conditional on X_i : $E[Y_{1i} Y_{0i}|D_i = 0, X_i]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Heterogenous Treatment Effects

Homogeneous treatment effects (Case 1):

• $ATE = TT = TUT = ATE(X_i) = TT(X_i) = TUT(X_i)$

- ▶ Homogeneous treatment effects conditional on X_i (Case 2):
 - ATE(X_i) = TT(X_i) = TUT(X_i) but possible that ATE ≠ TT ≠ TUT
- Heterogeneous treatment effects (Case 3(a)):
 - Same as Case 2
- Heterogeneous treatment effects (Case 3(b)):
 - $ATE \neq TT \neq TUT \neq ATE(X_i) \neq TT(X_i) \neq TUT(X_i)$

Evaluation Problems

Homogeneous treatment effects (Case 1): Selection bias

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

= $E[Y_{1i} - Y_{0i}|D_i = 1] + E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]$
= $\Delta + E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]$

- $E[Y_{0i}|D_i = 1] E[Y_{0i}|D_i = 0]$ is selection bias
- e.g., individuals with higher "baseline" tend to attend college

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Same in Case 2

Evaluation Problems

Heterogeneous treatment effects (Case 3):

$$\begin{split} & E[Y_i|D_i = 1] - E[Y_i|D_i = 0] \\ &= E[Y_{1i} - Y_{0i}|D_i = 1] + E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0] \\ &= E[Y_{1i} - Y_{0i}] + E[Y_{1i} - Y_{0i}|D_i = 1] - E[Y_{1i} - Y_{0i}] \\ &+ E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0] \end{split}$$

- $E[Y_{1i} Y_{0i}|D_i = 1] E[Y_{1i} Y_{0i}]$ is the sorting gain
- e.g., individuals with higher college premium tend to attend college

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Sorting gain is not zero in Case 3(b)

Overview of Possible Approaches

- How to recover some mean treatment parameters?
 - 1. Randomized experiment
 - 2. Matching / conditional independence assumption
 - 3. Difference-in-differences (DD)
 - 4. Regression discontinuity (RD)
 - 5. Instrumental variables (IV) methods
- These methods allow heterogeneous treatment effects
 - Which treatment parameter is recovered depends on the method
 - Sometime we use structural models (e.g., linear model) for each method
 - This means we impose more restrictions
 - Treatment effects may even be restricted to be homogeneous

Randomized Experiment

- When D_i is randomized, it satisfies $(Y_{1i}, Y_{0i}) \perp D_i$
 - e.g., random lottery for college (among eligible applicants)
- ► Then,

$$E[Y_{di}|D_i = d] = E[Y_{di}]$$
 for $d = 1, 0$

Random assignment eliminates selection bias and sorting gain:

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0] = E[Y_{1i}|D_i = 1] - E[Y_{0i}|D_i = 0]$$
$$= E[Y_{1i}] - E[Y_{0i}]$$
$$= E[Y_{1i} - Y_{0i}]$$

Simple difference-in-mean estimator can be used:

$$\frac{\sum_{i=1}^{n} Y_i \mathbb{1}\{D_i = 1\}}{\sum_{i=1}^{n} \mathbb{1}\{D_i = 1\}} - \frac{\sum_{i=1}^{n} Y_i \mathbb{1}\{D_i = 0\}}{\sum_{i=1}^{n} \mathbb{1}\{D_i = 0\}}$$

First, we consider the approach that imposes conditional independence assumption:

 $(Y_{1i}, Y_{0i}) \perp D_i | X_i$

- i.e., conditional on X_i (e.g., demographics, previous educations), we assume D_i (e.g., college) is as if randomized
- Idea of matching: conditional on X_i, the two groups are balanced
- This can be weaken to mean independence
- Another assumption needed: For any X_i,

$$0 < \Pr[D_i = 1 | X_i] < 1$$

- Common support (or overlap) assumption
- Related to "no multicollinearity" assumption

Under these assumption,

$$E[Y_i|D_i = 1, X_i] - E[Y_i|D_i = 0, X_i]$$

= $E[Y_{1i}|D_i = 1, X_i] - E[Y_{0i}|D_i = 0, X_i]$
= $E[Y_{1i}|X_i] - E[Y_{0i}|X_i]$
= $E[Y_{1i} - Y_{0i}|X_i]$

X_i can include many covariates, even continuous variables
 May not be appealing in practice

Surprising result:

$$(Y_{1i}, Y_{0i}) \perp D_i | X_i \iff (Y_{1i}, Y_{0i}) \perp D_i | P(X_i)$$

where $P(X_i) = \Pr[D_i = 1 | X_i]$ is the propensity score

- This is the idea of propensity score matching
- As long as the propensity of receiving treatment is the same, the two groups are balanced

That is,

$$E[Y_i|D_i = 1, P(X_i)] - E[Y_i|D_i = 0, P(X_i)]$$

= $E[Y_{1i} - Y_{0i}|P(X_i)]$

· Again, the common support assumption is implicitly used

Various estimators can be used

- Regression-based estimator
- Inverse probability weighting estimator
- Matching estimator

Much weaker independence assumption:

$$E[Y_{0i}|D_i = 1, X_i] = E[Y_{0i}|D_i = 0, X_i]$$

► Then,

$$E[Y_i|D_i = 1, X_i] - E[Y_i|D_i = 0, X_i]$$

= $E[Y_{1i}|D_i = 1, X_i] - E[Y_{0i}|D_i = 0, X_i]$
= $E[Y_{1i}|D_i = 1, X_i] - E[Y_{0i}|D_i = 1, X_i]$
= $E[Y_{1i} - Y_{0i}|D_i = 1, X_i]$

Before-After Analysis (Event Studies)

- Suppose we observe individuals before/after treatment
 - e.g., before and after job training
- $D_i = 1$ if *i* receives treatment at given time
- Y_{it} : outcome in period t; Y_{1it} and Y_{0it} are potential outcomes
 - t = b (before) or a (after)
 - Y_{ia} : outcome in period after the treatment $(Y_{ia} = Y_{1ia})$
 - Y_{ib} : outcome in period before the treatment $(Y_{ib} = Y_{0ib})$
- Assumption: $E[Y_{0ib}|D_i = 1] = E[Y_{0ia}|D_i = 1]$

Then,

$$E[Y_{ia}|D_i = 1] - E[Y_{ib}|D_i = 1] = E[Y_{1ia}|D_i = 1] - E[Y_{0ib}|D_i = 1]$$
$$= E[Y_{1ia}|D_i = 1] - E[Y_{0ia}|D_i = 1]$$
$$= E[Y_{1ia} - Y_{0ia}|D_i = 1]$$

• Treatment effect on the treated (after the treatment)

Difference-in-Differences

- Is the assumption above plausible?
 - e.g., time effects, age effects...
- Suppose we observe treated/untreated individuals, before/after treatment
- Common trend assumption:

$$E[Y_{0ia} - Y_{0ib}|D_i = 1] = E[Y_{0ia} - Y_{0ib}|D_i = 0]$$

- e.g., "baseline" wage trends are same btw treatment and control groups
- Let $\Delta Y_{0i} = Y_{0ia} Y_{0ib}$, then this assumption (conditional on X_i) is conditional indep in terms of ΔY_{0i}

Difference-in-Differences

Common trend assumption:

$$E[Y_{0ia} - Y_{0ib}|D_i = 1] = E[Y_{0ia} - Y_{0ib}|D_i = 0]$$

Then,

$$\begin{split} & E[Y_{ia} - Y_{ib}|D_i = 1] - E[Y_{ia} - Y_{ib}|D_i = 0] \\ &= E[Y_{1ia} - Y_{0ib}|D_i = 1] - E[Y_{0ia} - Y_{0ib}|D_i = 0] \\ &= E[Y_{1ia} - Y_{0ia}|D_i = 1] \\ &+ E[Y_{0ia} - Y_{0ib}|D_i = 1] - E[Y_{0ia} - Y_{0ib}|D_i = 0] \\ &= E[Y_{1ia} - Y_{0ia}|D_i = 1] \end{split}$$

(ロ)、(型)、(E)、(E)、 E) のQ()

• Treatment effect on the treated (after the treatment)

Regression Discontinuity

- Let R_i be the running variable
 - e.g., college test score or eligibility score
- Suppose

$$D_i = \begin{cases} 1 & \text{if } R_i \ge r_0 \\ 0 & \text{if } R_i < r_0 \end{cases}$$

Comparison:

$$\lim_{\epsilon \downarrow 0} E[Y_i | R_i = r_0 + \epsilon] - \lim_{\epsilon \downarrow 0} E[Y_i | R_i = r_0 - \epsilon]$$

=
$$\lim_{\epsilon \downarrow 0} E[Y_{1i} | R_i = r_0 + \epsilon] - \lim_{\epsilon \downarrow 0} E[Y_{0i} | R_i = r_0 - \epsilon]$$

=
$$E[Y_{1i} | R_i = r_0] - E[Y_{0i} | R_i = r_0]$$

• Local polynomial estimators (with chosen window of R_i)

Instrumental Variables Methods

- Suppose there exists an instrumental variable (IV) that satisfies
 - $cov(D,Z) \neq 0$
 - $Z \perp (Y_0, Y_1)$
 - ◊ i.e., Exclusion restriction: The only difference created by IV is in the likelihood of receiving treatment

- e.g., distance to nearest college or density of colleges
- e.g., random lottery for college (but potential non-compliance)

Challenges with Essential Heterogeneity

Consider

$$Y = Y_0 + D(Y_1 - Y_0) = E[Y_0] + DE[Y_1 - Y_0] + (\varepsilon + \eta D)$$

where $\varepsilon = Y_0 - E[Y_0]$ and $\eta = (Y_1 - Y_0) - E[Y_1 - Y_0]$

- Q: Does linear IV recover a parameter of interest?
 - If Δ const, classical IV results hold and IV recovers treatment effects
 - If Δ hetero and if essential hetero, classical IV results not hold and IV not recover interpretable parameters
 - If Δ hetero and if essential hetero, and if impose selection model (i.e., LATE monotonicity), IV recovers interpretable parameters (may/may not be of interest)

Challenges with Essential Heterogeneity

• Case 1:
$$\Delta$$
 const (i.e., $\eta = 0$)

• Then, $cov(Z, Y_0) = 0$ implies $cov(Z, \varepsilon) = 0$

• Then,

$$\frac{cov(Y,Z)}{cov(D,Z)} = E[Y_1 - Y_0]$$

• If there is another IV, it identifies the same parameter

Case 3: Δ varies even conditional on X

- In general, we cannot identify $E[Y_1 Y_0]$
- We need $E[\varepsilon + \eta D|Z] = 0$
- $E[\varepsilon|Z] = 0$, but

$$\mathsf{E}[\eta D|Z] = \mathsf{E}[\eta|D=1, Z]\mathsf{P}[D=1|Z]$$

and even if $E[\eta|Z] = 0$, $E[\eta|D = 1, Z] \neq 0$ (i.e., essential hetero)

Challenges with Essential Heterogeneity

Three approaches:

- 1. LATE and MTE approaches (selection model approach)
 - May focus on different parameters
- 2. Nonparametric IV approach (may be restrictive)
 - May be restrictive to allow for essential heterogeneity

3. Nonparametric control function approach

Local Average Treatment Effect (LATE)

Suppose Z_i is binary

• e.g., close to college $(Z_i = 1)$ or distant to college $(Z_i = 0)$

- We cannot recover ATE $E[Y_{1i} Y_{0i}]$ in general
- Define counterfactual treatment: D_{1i} and D_{0i}
 - e.g., D_{1i} = 1 (or 0): i would have attended (or not attend) college, had i lived close to college
- "Monotonicity" assumption: $D_{1i} \ge D_{0i}$ for all *i* or $D_{1i} \le D_{0i}$ for all *i*
 - e.g., no individual who would have attended college if living far from college but have not attended if living close to college

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

• i.e., no defiers $\{D_{1i} = 0, D_{0i} = 1\}$

Local Average Treatment Effect (LATE)

► Then,

$$\frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1] - E[D_i|Z_i=0]} = E[Y_{1i} - Y_{0i}|D_{1i}=1, D_{0i}=0]$$

• $\frac{E[Y_i|Z_i=1]-E[Y_i|Z_i=0]}{E[D_i|Z_i=1]-E[D_i|Z_i=0]}$ is the Wald estimand (or TSLS estimand)

•
$$E[Y_{1i} - Y_{0i}|D_{1i} = 1, D_{0i} = 0]$$
 is called LATE

- Individuals who behave like $\{D_{1i} = 1, D_{0i} = 0\}$ are called "compliers"
- e.g., individuals who would have attended college if living close to college but have not attended if living far
- Need to understand which parameter you are estimating!

Suppose

$$D_i = \mathbb{1}[h(Z_i) \geq V_i]$$

- The structure can be motivated by agent's optimizing behavior
 e.g., attend college when net utility is positive
- This model is equivalent to "monotonicity" assumption above!

• Assume Z_i is continuous, and define MTE as

$$E[Y_{1i} - Y_{0i}|V_i = v]$$

• ATE for those who are indifferent (i.e., those on the "margin")

► MTE:

$$E[Y_{1i} - Y_{0i}|V_i = v]$$

Note that

$$E[Y_{1i} - Y_{0i}|D_{z'i} = 1, D_{zi} = 0] = E[Y_{1i} - Y_{0i}|h(z') \ge V_i, h(z) < V_i]$$

= $E[Y_{1i} - Y_{0i}|h(z) < V_i \le h(z')]$

therefore

$$E[Y_{1i} - Y_{0i}|V_i = h(z)] = \lim_{h(z') \to h(z)} E[Y_{1i} - Y_{0i}|h(z) < V_i \le h(z')]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

MTE can be viewed as a building block to generate various treatment parameters:

$$\tau_k = \int \omega_k(\mathbf{v}, \mathbf{z}) \mathbf{E}[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} | \mathbf{V}_i = \mathbf{v}] d\mathbf{v}$$

ω_k(z, v) is known weight specific to the parameter of interest
For example,

$$ATE = E[Y_{1i} - Y_{0i}] = \int_{0}^{1} E[Y_{1i} - Y_{0i}|V_{i} = v]dv$$

$$LATE = E[Y_{1i} - Y_{0i}|D_{zi} = 1, D_{z'i} = 0]$$

$$= \int_{P(z')}^{P(z)} \frac{E[Y_{1i} - Y_{0i}|V_{i} = v]}{P(z) - P(z')}dv$$

$$ATT = E[Y_{1i} - Y_{0i}|D_{i} = 1] = \int_{0}^{P(z)} \frac{E[Y_{1i} - Y_{0i}|V_{i} = v]}{P[D = 1]}dv$$

Moreover, MTE can be recovered by

$$E[Y_{1i} - Y_{0i}|V_i = p] = \frac{\partial E[Y_i|P(Z_i) = p]}{\partial p}$$

where $P(X_i) = \Pr[D_i = 1|X_i]$

- Continuity of P(Z_i) and thus continuity of Z_i is important
 e.g., Z_i is actual distance to nearest college
- Support of $P(Z_i)$ and thus support of Z_i can be important, depending on parameters

 $\diamond~$ e.g., for ATE, $P(Z_i)
ightarrow 1, 0$, which means $Z_i
ightarrow +\infty, -\infty$

- MTE itself can be a parameter of interest
 - Non-constant MTE reflects heterogeneity
- MTE can be estimated nonparametrically, but typically after imposing more structure

Nonparametric IV Approach

Let

$$Y_i = g(D_i, U_i)$$

• Want to know g because $Y_{1i} = g(1, U_i)$ and $Y_{0i} = g(0, U_i)$

- Let Z_i be an IV that satisfies $E[U_i|Z_i] = 0$
- Assume U_i is scalar and $g(D_i, \cdot)$ is strictly monotonic
 - e.g., $Y_i = g(D_i) + U_i$
 - If U_i is continuous, Y_i should be continuous

Nonparametric IV Approach

Then

$$0 = E[U_i | Z_i] = E[g^{-1}(D_i, Y_i) | Z_i]$$

• e.g.,
$$0 = E[U_i|Z_i] = E[Y_i - g(D_i)|Z_i]$$

► If we additionally impose completeness condition (i.e., Z_i is relevant for D_i in "nonparametric sense"), then g can be recovered from

$$E[Y_i|Z_i] = E[g(D_i)|Z_i]$$

- Estimation is more challenging due to the ill-posed inverse problem
 - $E[\cdot]$ is smooth, so its inverse is non-smooth
 - Related to "small denominator" problem
 - Regularization is needed

Nonparametric Control Function Approach

Assume

$$D_i = h(Z_i, V_i)$$

where V_i is scalar and $h(Z_i, \cdot)$ is strictly monotonic

- e.g., $D_i = h(Z_i) + V_i$
- If V_i is continuous, D_i should be continuous (e.g., years of education)
- Then, construct a CF:

$$V_i = h^{-1}(Z_i, D_i)$$

• e.g.,
$$V_i = D_i - h(Z_i)$$

Nonparametric Control Function Approach

• Assume
$$E[U_i|V_i, Z_i] = E[U_i|V_i]$$

• Let
$$Y_i = g(D_i) + U_i$$
 for simplicity

Then

$$E[Y_i|D_i, Z_i] = g(D_i) + E[U_i|D_i, Z_i] = g(D_i) + E[U_i|V_i, Z_i] = g(D_i) + E[U_i|V_i] = g(D_i) + \lambda(V_i)$$

Equivalently

$$Y_i = g(D_i) + \lambda(V_i) + \eta_i$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $E[\eta_i | D_i, Z_i] = 0$

• Nonparametrically estimate g and λ after estimating V_i

References

- Holland, P. W. (1986). Statistics and Causal Inference. Journal of the American Statistical Association, 81(396):945-960.
- Heckman, J. J. (2008). Econometric causality. International statistical review, 76(1), 1-27.
- Angrist, J. D., & Pischke, J. S. (2009). Mostly harmless econometrics: An empiricist's companion. Princeton university press.
- Heckman, J. J., & Vytlacil, E. J. (2007). Econometric evaluation of social programs, part I. Handbook of econometrics, 6, 4779-4874.
- Heckman, J. J., & Vytlacil, E. J. (2007). Econometric evaluation of social programs, part II. Handbook of econometrics, 6, 4875-5143.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Thank You! ©

・ロット (四) (日) (日) (日) (日)