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Causal Inference: Roadmap for Part Il

Machine learning (ML) for causal inference
> lIssues of naive ML approach
» Double/debiased ML approach
» Neyman orthogonality
» Sample splitting
1. Example 1: Average treatment effects

3. Example 2: Partially linear models



Example 1: Estimating Average Treatment Effects

» Assume Yy L D|X for d € {0,1}

e Conditional independence
e X is potentially high-dimensional
> Suppose 0y = E[Y1 — Yo
» By conditional independence,
0o = E[E[Y|D =1,X] — E[Y|D =0, X]]
= E[go(1, X) — g0(0, X)]

where go(D, X) = E[Y|D, X]



Naive Approach: Plug-In

v

Naive approach for estimation:

v

Use ML to learn go(1, X) and go(0, X)
i.e., obtain g(1,X) and g(0, X)

e e.g., lasso, random forest, neural network

v

v

Then, use a plug-in estimator:

~ I, . .
Opng = — > _{8(1, X)) — 8(0,X)}
i=1

v

The plug-in estimator is biased, inconsistent and not
asymptotically normal

e Even if predictive performance of g is superb!



Naive Plug-In Estimator
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Figure: Bias of Plug-In Estimator of



Naive Plug-In Estimator

Non-Orthogonal, n = 500, p = 20

10" " Simuiation
N(O.5)

Figure: Bias of Plug-In Estimator of 6g

» This is because bias and error in estimating gy influence
e e.g., regularization bias

» Q: How to guarantee 0 is \/n-asymptotically normal?

» Q: How to make estimation of g insensitive to variations in g?



Double ML Approach

> Suppose gy € G where G is space of sg-integrable functions

» Suppose dag € G such that

e Existence of o by Riesz representation theorem

® qg is the Riesz representer

» Then, by (1)

to = Elgo(1, X) — g0(0, X)]
= Efao(D, X)go(D, X)]
= Efao(D, X)E[Y|D, X]]
= E[E[ao(D, X)Y|D, X]|
= E[ao(D, X) Y]

e Three different representations of 6y —(x)



Double ML Approach

» What is ayp in this case? With P(X) = P[D = 1|X],

ao(D, X) =

D 1-D

P(X) 1-P(X)

e Inverse probability weighting (IPW)

» This is because, e.g.,

E [P(Dx)g(D,X)] .y

[E[D|X]
| P(X)

g(l,X)] — Elg(1.X)]



Double ML Approach

> Motivated from (x), let

0o = M(go, o)
= E[go(1, X) — g0(0, X)] + E[ao(D, X)(Y — go(D, X))]

® go and ag are nuisance functions
* ag(D, X)(Y — go(D, X)) is influence function adjustment
» Then,
o = M(go, )

=M(g,a0) Vge€G
= M(go, ) Vae G



Double ML Approach

» Also, when taking directional derivative w.r.t. nuisance
functions in any direction v € G,

aat (g0+tV a0)| -0
= E[v(1,X) — (0,

X)] — E[ao(D, X)v(D,X)] =0
by (1) and

gt_/\/l(go,ao + tl/)’t:()

= E[v(D, X)(Y — &0(D, X))]

= E[E[v(D, X)(Y — go(D, X))|D, X]] = 0
e Neyman orthogonality

» M is locally insensitive to either g or «
e Double robustness



DML Estimation

» Using the DML formula,
N 1< A A A
OomL = — > {81, X)) — £(0, X)) + &(Dy, Xi)(Yi — &(Di, X))}
i=1
» Under regularity conditions,

Vn(@pme — 80) ~ N(0,0?)

» Bias in estimation of g and « does not transmit to estimation
of 6 (at least to the first order)

» Rate of convergence of & and g only needs to be faster than
n~1/* (more later)

e This holds for most “simple” ML



Sample Splitting

» It is advised to split the sample
1. Calculate g and & using one sample

2. Calculate éDML using another sample

» This removes dependence between (g, &) and Opur
e Asymptotic normality is guaranteed under weaker conditions

e j.e., remove bias induced by overfitting

» More generally, cross validation can be used to improve
efficiency



Double ML Estimator
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More General Framework
> In general, suppose go(X) = E[Y|X] and

0o = E[m(Z; go)]

e c.g., ATE (above) and average derivate
(6o = E[0g(D, X)/OD] with continuous D)

> Then
0o = M(go, o) = E[m(Z; go) + o (X)(Y — go(X))]
where o € G is Riesz representer s.t.
E[m(Z; g)] = E[ao(X)g(X)] Vg€ G

» Then

i= %Z &)Y — 8(X))}



Example 2: Partially Linear Models

» Partially linear model with continuous D
Y =D0+ go(Z)+ U, E[U|Z,D]=0

e D: treatment; 0 is parameter of interest

e Z: high-dim covariates (i.e., “controls” or “measured
confounders”)

» Z are confounders in the sense that

D=mo(Z)+V, E[V|Z]=0



Naive Approach: Prediction-Based ML

» Predict Y using D and Z and obtain
Dl + &(Z)
¢ e.g., Estimation using alternating minimization:
1. Choose initial guess

2. Run random forest of Y — DA on Z to fit g(Z2)
3. Run OLS on Y — 2(Z) on D to fit §

4. Repeat until convergence

» Again, excellent prediction performance but 8 is biased and
not asymptotically normal



Double ML Approach

1. Predict Y and D using Z by E[/Y\\Z] and E[/D\\Z]
2. Residualize W = Y — E[/Y|\Z] and V=D — E[/D\\Z]
3. Regress W on V to get 9DML

» Split sample between Step 1 and Step 2

» Then

Vn(OpmL — 0o) ~ N(O, X)



Moment Conditions

» Two approaches rely on different moment conditions:
E[(Y — Do — go(Z))D] =0 (2)

E[(Y — Do)(D — E[D|Z])] =0 (3)
E[{(Y - E[Y|Z]) - (D - E[D|Z])bo} (D — E[D|Z])] = 0 (4)

® (2): Regression adjustment
® (3): Propensity score adjustment
® (4): Neyman-orthogonal

» Both approaches generate estimators of 6y that solve the
empirical analog of the moment conditions above...

e after plugging in ML-based estimators for
g(Z), mo(Z) = E[D|Z], (o(Z) = E[Y|Z]

using set-aside sample



Naive Approach from (2): Prediction-Based ML

> Suppose we use (2) with an estimator g(Z) to estimate 6p:

» Then
V(@ —00)=A+B
where
1< B
A== D?|] —D DU
(Fe) s
1< &
— [ 2 il . N _ (7
B = (niZ:;D/> \/E;DI (gO(ZI) g(ZI))

> A~ N(0,%) under standard conditions



Naive Approach from (2): Prediction-Based ML

v

Generally, B — oc:
B~ (ED?)~ meo Z) (go(Z)) — &(Z))

® go(Z;) — g(Z) is the error in estimating go

v

Heuristics:

® In nonparametric setting, the error is of order n=% for
0<p<1/2

e Then B will then look like v/nn™% — oo

Therefore, § is not \/n-consistent

v

v

Similar heuristics apply to estimation with (3)



Double ML Approach from (4)

> Suppose we use (4) to estimate 6y:
1o !
o = (23 0) Ly v
Opmr (n 2 i ) p Z
where V =D — m(Z) and W = Y — i(2)
» Under mild conditions, can write
Vn(@ - 6p) = A+ B* + C*

where C* = 0,(1) and



Double ML Approach from (4)

» A* ~» N(0,X) under standard conditions

» B* now depends on product of estimation errors in both
nuisance functions

> Then B* will look like /nn=(¥mt%¢) where ¢, and ¢ are
convergence rates of M(Z) and ¢(Z), resp.
e o(n~1/%) is often attainable rate for ML estimators

» C* contains terms like
1 n -1 1 n
2 A~
(n Z Vi > 7 Z Ui (mo(Zi) — m(Zi))
i=1 i=1
* With sample splitting, easy to control and claim op(1)

* Without sample splitting, hard to control and claim o,(1)



Neyman Orthogonality of (4)

v

Key difference between (2) and (4) is that (4) satisfies
Neyman orthogonality condition:

> Let

770E(607m0)E(E[Y|Z]7E[D|Z])7 ﬂf(f,m)

v

The Gateaux derivative of (4) w.r.t. 7 vanishes:

hEH(Y = £(2)) = (D —m(Z))bo} (D — m(2)) =0

=g

® j.e., the moment condition remains “valid” under “local”
mistakes in the nuisance functions

v

This property generally does not hold with (2) for nuisance
function g
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Thank You! ®



