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Causal Inference: Roadmap for Part II

Machine learning (ML) for causal inference

I Issues of naive ML approach

I Double/debiased ML approach

I Neyman orthogonality

I Sample splitting

1. Example 1: Average treatment effects

3. Example 2: Partially linear models



Example 1: Estimating Average Treatment Effects

I Assume Yd ⊥ D|X for d ∈ {0, 1}
• Conditional independence

• X is potentially high-dimensional

I Suppose θ0 = E [Y1 − Y0]

I By conditional independence,

θ0 = E [E [Y |D = 1,X ]− E [Y |D = 0,X ]]

= E [g0(1,X )− g0(0,X )]

where g0(D,X ) ≡ E [Y |D,X ]



Naive Approach: Plug-In

I Naive approach for estimation:

I Use ML to learn g0(1,X ) and g0(0,X )

I i.e., obtain ĝ(1,X ) and ĝ(0,X )
• e.g., lasso, random forest, neural network

I Then, use a plug-in estimator:

θ̂plug =
1
n

n∑
i=1

{ĝ(1,Xi )− ĝ(0,Xi )}

I The plug-in estimator is biased, inconsistent and not
asymptotically normal

• Even if predictive performance of ĝ is superb!



Naive Plug-In Estimator

Figure: Bias of Plug-In Estimator of θ0

I This is because bias and error in estimating g0 influence θ̂
• e.g., regularization bias

I Q: How to guarantee θ̂ is
√
n-asymptotically normal?

I Q: How to make estimation of θ0 insensitive to variations in g?
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Double ML Approach
I Suppose g0 ∈ G where G is space of sq-integrable functions

I Suppose ∃α0 ∈ G such that

E [α0(D,X )g(D,X )] = E [g(1,X )− g(0,X )] ∀g ∈ G (1)

• Existence of α0 by Riesz representation theorem

• α0 is the Riesz representer

I Then, by (1)

θ0 = E [g0(1,X )− g0(0,X )]

= E [α0(D,X )g0(D,X )]

= E [α0(D,X )E [Y |D,X ]]

= E [E [α0(D,X )Y |D,X ]]

= E [α0(D,X )Y ]

• Three different representations of θ0 —(∗)



Double ML Approach
I What is α0 in this case? With P(X ) ≡ P[D = 1|X ],

α0(D,X ) =
D

P(X )
− 1− D

1− P(X )

• Inverse probability weighting (IPW)

I This is because, e.g.,

E

[
D

P(X )
g(D,X )

]
= E

[
E

[
D

P(X )
g(D,X )

∣∣∣∣D]]
= E

[
E

[
D

P(X )
g(1,X )

∣∣∣∣D]]
= E

[
D

P(X )
g(1,X )

]
= E

[
E [D|X ]

P(X )
g(1,X )

]
= E [g(1,X )]



Double ML Approach

I Motivated from (∗), let

θ0 = M(g0, α0)

≡ E [g0(1,X )− g0(0,X )] + E [α0(D,X )(Y − g0(D,X ))]

• g0 and α0 are nuisance functions

• α0(D,X )(Y − g0(D,X )) is influence function adjustment

I Then,

θ0 = M(g0, α0)

= M(g , α0) ∀g ∈ G

= M(g0, α) ∀α ∈ G



Double ML Approach
I Also, when taking directional derivative w.r.t. nuisance

functions in any direction ν ∈ G ,

∂

∂t
M(g0 + tν, α0)|t=0

= E [ν(1,X )− ν(0,X )]− E [α0(D,X )ν(D,X )] = 0

by (1) and

∂

∂t
M(g0, α0 + tν)|t=0

= E [ν(D,X )(Y − g0(D,X ))]

= E [E [ν(D,X )(Y − g0(D,X ))|D,X ]] = 0

• Neyman orthogonality

I M is locally insensitive to either g or α
• Double robustness



DML Estimation

I Using the DML formula,

θ̂DML =
1
n

n∑
i=1

{ĝ(1,Xi )− ĝ(0,Xi ) + α̂(Di ,Xi )(Yi − ĝ(Di ,Xi ))}

I Under regularity conditions,
√
n(θ̂DML − θ0) N(0, σ2)

I Bias in estimation of g and α does not transmit to estimation
of θ (at least to the first order)

I Rate of convergence of α̂ and ĝ only needs to be faster than
n−1/4 (more later)

• This holds for most “simple” ML



Sample Splitting

I It is advised to split the sample
1. Calculate ĝ and α̂ using one sample

2. Calculate θ̂DML using another sample

I This removes dependence between (ĝ , α̂) and θ̂DML

• Asymptotic normality is guaranteed under weaker conditions

• i.e., remove bias induced by overfitting

I More generally, cross validation can be used to improve
efficiency



Double ML Estimator

Figure: Bias of Plug-In Estimator of θ0



More General Framework
I In general, suppose g0(X ) ≡ E [Y |X ] and

θ0 = E [m(Z ; g0)]

• e.g., ATE (above) and average derivate
(θ0 = E [∂g(D,X )/∂D] with continuous D)

I Then

θ0 = M(g0, α0) ≡ E [m(Z ; g0) + α0(X )(Y − g0(X ))]

where α0 ∈ G is Riesz representer s.t.

E [m(Z ; g)] = E [α0(X )g(X )] ∀g ∈ G

I Then

θ̂ =
1
n

n∑
i=1

{m(Zi ; ĝ) + α̂(Xi )(Yi − ĝ(Xi ))}



Example 2: Partially Linear Models

I Partially linear model with continuous D

Y = Dθ0 + g0(Z ) + U, E [U|Z ,D] = 0

• D: treatment; θ is parameter of interest

• Z : high-dim covariates (i.e., “controls” or “measured
confounders”)

I Z are confounders in the sense that

D = m0(Z ) + V , E [V |Z ] = 0



Naive Approach: Prediction-Based ML

I Predict Y using D and Z and obtain

D θ̂ + ĝ(Z )

• e.g., Estimation using alternating minimization:
1. Choose initial guess θ̂

2. Run random forest of Y − D θ̂ on Z to fit ĝ(Z)

3. Run OLS on Y − ĝ(Z) on D to fit θ̂

4. Repeat until convergence

I Again, excellent prediction performance but θ̂ is biased and
not asymptotically normal



Double ML Approach

1. Predict Y and D using Z by Ê [Y |Z ] and Ê [D|Z ]

2. Residualize Ŵ = Y − Ê [Y |Z ] and V̂ = D − Ê [D|Z ]

3. Regress Ŵ on V̂ to get θ̂DML

I Split sample between Step 1 and Step 2

I Then
√
n(θ̂DML − θ0) N(0,Σ)



Moment Conditions

I Two approaches rely on different moment conditions:

E [(Y − Dθ0 − g0(Z ))D] = 0 (2)

E [(Y − Dθ0)(D − E [D|Z ])] = 0 (3)

E [{(Y − E [Y |Z ])− (D − E [D|Z ])θ0} (D − E [D|Z ])] = 0 (4)

• (2): Regression adjustment

• (3): Propensity score adjustment

• (4): Neyman-orthogonal

I Both approaches generate estimators of θ0 that solve the
empirical analog of the moment conditions above...

• after plugging in ML-based estimators for

g0(Z ), m0(Z ) ≡ E [D|Z ], `0(Z ) ≡ E [Y |Z ]

using set-aside sample



Naive Approach from (2): Prediction-Based ML
I Suppose we use (2) with an estimator ĝ(Z ) to estimate θ0:

θ̂ =

(
1
n

n∑
i=1

D2
i

)−1
1
n

n∑
i=1

Di (Yi − ĝ(Zi ))

I Then
√
n(θ̂ − θ0) = A + B

where

A ≡

(
1
n

n∑
i=1

D2
i

)−1
1√
n

n∑
i=1

DiUi

B ≡

(
1
n

n∑
i=1

D2
i

)−1
1√
n

n∑
i=1

Di (g0(Zi )− ĝ(Zi ))

I A N(0, Σ̃) under standard conditions

I What about B?



Naive Approach from (2): Prediction-Based ML

I Generally, B →∞:

B ≈
(
ED2)−1 1√

n

n∑
i=1

m0(Zi ) (g0(Zi )− ĝ(Zi ))

• g0(Zi )− ĝ(Zi ) is the error in estimating g0

I Heuristics:
• In nonparametric setting, the error is of order n−ϕ for

0 < ϕ < 1/2

• Then B will then look like
√
nn−ϕ →∞

I Therefore, θ̂ is not
√
n-consistent

I Similar heuristics apply to estimation with (3)



Double ML Approach from (4)
I Suppose we use (4) to estimate θ0:

θ̂DML =

(
1
n

n∑
i=1

V̂ 2
i

)−1
1
n

n∑
i=1

V̂iŴi

where V̂ = D − m̂(Z ) and Ŵ = Y − ˆ̀(Z )

I Under mild conditions, can write
√
n(θ̂ − θ0) = A∗ + B∗ + C ∗

where C ∗ = op(1) and

A∗ ≡

(
1
n

n∑
i=1

V 2
i

)−1
1√
n

n∑
i=1

ViUi

B∗ ≡

(
1
n

n∑
i=1

V 2
i

)−1
1√
n

n∑
i=1

(m0(Zi )− m̂(Zi )) (g0(Zi )− ĝ(Zi ))



Double ML Approach from (4)

I A∗  N(0,Σ) under standard conditions

I B∗ now depends on product of estimation errors in both
nuisance functions

I Then B∗ will look like
√
nn−(ϕm+ϕ`) where ϕm and ϕ` are

convergence rates of m̂(Z ) and ˆ̀(Z ), resp.
• o(n−1/4) is often attainable rate for ML estimators

I C ∗ contains terms like(
1
n

n∑
i=1

V 2
i

)−1
1√
n

n∑
i=1

Ui (m0(Zi )− m̂(Zi ))

• With sample splitting, easy to control and claim op(1)

• Without sample splitting, hard to control and claim op(1)



Neyman Orthogonality of (4)

I Key difference between (2) and (4) is that (4) satisfies
Neyman orthogonality condition:

I Let

η0 ≡ (`0,m0) ≡ (E [Y |Z ],E [D|Z ]), η ≡ (`,m)

I The Gateaux derivative of (4) w.r.t. η vanishes:

∂ηE [{(Y − `(Z ))− (D −m(Z ))θ0} (D −m(Z ))]|η=η0 = 0

• i.e., the moment condition remains “valid” under “local”
mistakes in the nuisance functions

I This property generally does not hold with (2) for nuisance
function g
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Thank You! ,


